Information technology — Digitally recorded media for information interchange and storage — 120 mm Single Layer (25,0 Gbytes per disk) and Dual Layer (50,0 Gbytes per disk) BD Rewritable disk

TECHNICAL CORRIGENDUM 1

Replace the fourth paragraph:

"If the step from the top surface in the Second transition area to the top surface in the Information Area is > h₁₆ = 0,2 mm, then the slope down to the top surface of the Information Area shall be smooth and ℓ₁ < 1,8 mm, as indicted in Figure 10. If the top surface in the Information Area is stepped down from the top surface in the Second transition area, then the step shall end within diameter d₈ = 40,0 mm"

with:

"The step from the top surface in the Second transition area to the top surface in the Information Area is h₁₆. The distance between the start and the end diameter of the step is ℓ₁. If h₁₆ > 0,2 mm, then the slope down to the top surface of the Information Area shall be smooth and ℓ₁ shall be > 1,8 mm, as indicted in Figure 10. If the top surface in the Information Area is stepped down from the top surface in the Second transition area, then the step shall end within diameter d₈ = 40,0 mm"
Page 105, 15.8.3.4

Replace the descriptions of Bytes 69 to 76:

Bytes 69 to 76: These bytes specify the duration of the first pulse of the multi-pulse train for recording Marks with run-lengths of 4T that succeed a Space with a run-length of 2T, 3T, 4T or ≥ 5T (see F.3).

with:

Bytes 69 to 76: These bytes specify the duration of the first pulse of the multi-pulse train for recording Marks with run-lengths of ≥ 4T that succeed a Space with a run-length of 2T, 3T, 4T or ≥ 5T (see F.3).

Page 106, 15.8.3.4

Replace the descriptions of Bytes 95 to 97:

Bytes 95 to 97: \(dT_E \) erase level start time

The first 6 bits (bit \(b_7 \) to \(b_2 \)) of these bytes specify the start time of the erase level, succeeding the recording of Marks with run-lengths of 2T, 3T and ≥ 4T (positive values are leading, negative values are lagging; see F.3).

The start time of the Space level \(dT_E \) is expressed as a fraction of the actual Channel-bit clock period as a signed two's-complement binary number \(u \) such that

\[
\begin{align*}
 u &= 16 \times \frac{dT_E}{T_n} \\

\end{align*}
\]

The last 2 bits (bit \(b_1 \) to \(b_0 \)) of these bytes shall be Reserved.

Byte 95: This byte shall specify the start time of the Space level succeeding the recording of Marks with run-lengths ≥ 4T.

Byte 96: This byte shall specify the start time of the Space level succeeding the recording of Marks with a run-length of 3T.

Byte 97: This byte shall specify the start time of the Space level succeeding the recording of Marks with a run-length of 2T.
with

Bytes 95 to 97:
dT \(_{E}\) erase level start time

The first 6 bits (bit \(b_7\) to \(b_2\)) of these bytes specify the start time of the erase level, succeeding the recording of Marks with run-lengths of \(2T\), \(3T\) and \(\geq 4T\) (positive values are leading, negative values are lagging; see F.3).

The start time of the Erase level \(dT_{E}\) is expressed as a fraction of the actual Channel-bit clock period as a signed two’s-complement binary number \(u\) such that

\[
u = 16 \times \frac{dT_{E}}{T_{w}}
\]

The last 2 bits (bit \(b_1\) to \(b_0\)) of these bytes shall be Reserved.

Byte 95: This byte shall specify the start time of the Erase level succeeding the recording of Marks with run-lengths \(\geq 4T\).

Byte 96: This byte shall specify the start time of the Erase level succeeding the recording of Marks with a run-length of 3T.

Byte 97: This byte shall specify the start time of the Erase level succeeding the recording of Marks with a run-length of 2T.

Page 111, 15.8.3.5

Replace the equation in the descriptions of Byte \(f\):

\[
i = 16 \times \frac{T_{\text{top, var}}}{T_{w}}
\]

with:

\[
j = 16 \times \frac{T_{\text{top, var}}}{T_{w}}
\]
Replace Figure H.5:

Figure H.1 — Frequency characteristics of Conventional Equalizer

Figure H.2 — Frequency characteristics of Conventional Equalizer
Replace the second equation:

\[
\frac{l_{Wpp}}{(l_1 - l_2)} = \frac{2 \times l_{Wc}}{2 \times A} = \sin\left(\frac{2 \times \pi \times a}{T_p}\right)
\]

(2)

with:

\[
\frac{l_{Wpp}}{(l_1 - l_2)_{pp}} = \frac{2 \times l_{Wc}}{2 \times A} = \sin\left(\frac{2 \times \pi \times a}{T_p}\right)
\]

(M.2)

NOTE Other editorial errors such as hanging clauses or font styles will be also corrected in the updated reprint of the existing edition.